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Self-induced transparency with level degeneracy 
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Received 2 April 1990 

Abstract. The propagation of ultrashort coherent light pulses through a resonant atomic 
medium, modelled by a two-quantum level of absorbers, is studied including the effects 
of level degeneracy. The governing equations, a sequence of n-tuple sine-Gordon (SG)  

equations, are solved by quadrature for the @transition, with an approximate method 
indicated for the (mathematically) more difficult P- and R-transitions. It  is shown, in 
particular, that there is a surprisingly close relation between the usual SG equation and 
the double SG equation. A simple theorem is proved which shows that each travelling wave 
solution of the former immediately leads to a solution of the latter, which thus admits a 
restricted Backlund transformation. This direct solution of nonlinear dispersive equations, 
which apparently cannot be solved by the inverse method, has an interesting by-product: 
an approximate method for finding travelling wave solutions of relatively arbitrary Klein- 
Gordon equations. 

1. Introduction 

An interesting and physically important problem in nonlinear optics is the self-induced 
transparency phenomenon in which ultrashort (shorter than the relevant dissipative 
relaxation time) coherent light pulses can propagate through a resonant atomic medium 
as if the medium were transparent. A tractable model of this resonant interaction of 
intense light with matter is obtained by considering the interaction between a two- 
quantum level system of absorbers and a light wave, the magnitude of which is written 
as a rapidly oscillating travelling wave with a more slowly varying envelope, whose 
frequency is almost exactly equal to a transition frequency between two populated 
energy levels of the atoms of the resonant medium. The leading edge of the sufficiently 
intense pulse inverts the population while the trailing edge returns the population to 
its initial state by stimulated emission. The pulse envelope propagates at a velocity 
much less than the phase velocity of light in the medium. Detailed discussions of the 
model have been given by McCall and Hahn [l], Lamb [2,3] and others. 

The aforementioned model is governed essentially by the sine-Gordon ( S G )  
equation, an extensively studied equation, for which there is a Backlund transformation 
( BT) and a nonlinear superposition principle (theorem of permutability) [4], which 
permits additional solutions to be generated from known solutions purely algebraically. 
Further, there is a classical single-soliton solution which corresponds to a 2wpulse 
solution of the model. Lamb [3] and Barnard [ 5 ]  have used the nonlinear superposition 
principle to generate 2 N x  pulses, pulses for which the total area under the pulse 
envelope is 2 Nx,  by iteration. These larger-area pulses correspond to repeated inver- 
sions of the resonant medium, and as the alternating amplification and attenuation 
occurs, the pulses will split up, specifically into N stable 2 x  pulses, The iterated 
solutions exhibit exactly this behaviour. 
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The model suffers from the defect of ignoring possible level degeneracy, i.e. the 
existence of more than one wavefunction associated with one or both of the population 
levels. The modifications needed for a particular degenerate two-level system are 
discussed in Lamb [ 6 ] .  In this modified model, the SG equation is replaced by an 
n-tuple SG equation, the solution of which for the Q-branch transition is the primary 
topic of this paper. In actuality, a somewhat more general equation is considered, and 
an interesting by-product of the analysis is an algorithm for finding an approximate 
travelling wave solution of an arbitrary Klein-Gordon ( KG) equation. 

A brief derivation of the equations governing the non-degenerate model is given 
together with the modifications needed for the particular degenerate model. After 
reviewing one method of solving the SG equation, which is crucial to the later work, 
the Q(2)-branch transition, governed by a double SG equation, is solved, and, in 
particular, it is shown that there is a surprisingly close relation between this equation 
and the usual SG equation. Specifically, each travelling wave solution of the latter 
immediately leads to a travelling wave solution of the former. Further, the double SG 

equation admits a BT, the zero solution of which leads to an alternative method of 
determining the single-soliton solution. 

Explicit solutions are obtained for n-tuple SG equations for the cases n = 3, 4, 5 ,  
and the case of general n is discussed. The solution may be obtained by finding the 
roots of an algebraic equation of order n - 1, after which the solution follows by solving 
a system of linear algebraic equations and then performing a quadrature. 

2. The basic equations 

The equations governing the model without level degeneracy are 

T ,  + C ~ T ,  = aY:S 

S,  = TT 

T, = -7s ( 3 )  
where the functions S and T are evaluated at zero frequency shift, and the translational 
motion of the atoms has been eliminated. The optical field 0 and the macroscopic 
polarization density P are written as 

O(X, t )  = ( T h / p )  cos(ix - u t )  P(X, t )  = N ~ ~ S  sin(l;x - ut)  

where x is distance, t is the time, T = N / N o ,  N is the population inversion, No is the 
number of active atoms per unit volume, c, is the phase velocity of light in the medium, 
p is the dipole matrix element, a ;  = 2 n N 0 u p 2 /  h and h is Plank’s constant divided by 
2 ~ .  Partial derivatives are denoted by subscripts. Equations ( 2 )  and ( 3 )  are satisfied 
by S 2 +  T 2 =  1 so that 

S = *sin U T = *COS U T Z U , .  ( 4 )  

w6,, = *sin U ( 5 )  

Equation (1) then may be written as 

where 6 = xul/ t, 7 = al( t - x/ c1 ) .  The plus sign corresponds to the situation in which 
the population is initially inverted (propagation in an amplifier) while the minus sign 
corresponds to the atomic population at the lower level (propagation in an attenuator). 
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Since it has been shown that soliton propagation in an amplifier is unstable, the model 
has been utilized primarily with the lower sign in equation ( 5 ) .  

The classical single-soliton solution of equation ( 5 )  is given by (lower sign) 

(T = 4 tan-’ exp( A ) (6) 

where A = acu , ( t -x /v , ) ,  a is the Backlund parameter and v 1  = c l / ( l  + a - 2 ) ;  this gives 
the field as a hyperbolic secant pulse. 

The modifications necessary for the particular degenerate two-level system are 
discussed in Lamb [6]; the equation which replaces equation (5) is 

a , , = [ - ~ ~ : / c ~ ( 2 r + l ) l ~ ~ ]  d,, sin(d,a) 
,= - j  

(7) 

where r is a quantum number (for a given r, there are 2r + 1 levels) and j = r + s, where 
s is the spin quantum number. For the primary discussion of the present paper, the 
coefficients have the values 

d, = m/ j .  (8) 
Equation (7) will be considered for arbitrary coefficients, with complete solutions 
presented only for the case given by equation (8); the case n = 2 is an exception with 
complete solutions presented for arbitrary coefficients, including the Q(2) -transition. 
Lamb [6] has presented a discussion of the Q(2)-transition, using a solution U =  

a( t - x/ v l ) ,  attributed to Seeger; references to some numerical studies are given. 

3. The double sine-Gordon equation 

The solution of the double SG equation will be related to the solution of the usual SG 

equation. Thus, it is appropriate to examine the latter in some detail before determining 
the solution of the former. A trial solution of 

U,, = sin (T (9) 

u = 2 t a n - ’ F ( A ( + B q )  (10) 

will be sought in the form 

where F is assumed to be a twice continuously differentiable function and A and B 
are arbitrary constants. This assumption leads to the ordinary differential equation 

L[ F] = 1/AB (11) 
where 

L[ F] = Ft’/ F - 2Ft2/( 1 + F2) 

and the prime denotes differentiation with respect to the argument. The operator L 
recurs throughout the paper. 

Equation (1 1) is satisfied by 

Ff2 = ( E  + EF2 - l /AB)(  1 + F 2 )  (13) 
where E is an arbitrary constant; a quadrature yields E In particular, a solution for 
F(A6-t 7 / A )  is obtained from 

(14) F” = ( E  - 1 + EF2) (  1 + F2) 
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while a solution for F(A5-  q / A )  is obtained from 

F f 2  = ( E  + 1 + EF2)(1 + F’). 

Note that the single-soliton solution of equation (9) is obtained by letting E = 1 in 
equation (14). For later reference, the choice E = 0 in equation (13) gives 

F” = -( 1 + F 2 ) / A B .  

at,, = - ~ ’ ( a  s in(a /2)+@ sin a )  

(16) 

(17) 

The double SG equation will be taken in the form 

where ( a ,  p )  and D are constants. Before discussing the general case, some solutions 
for the Q(2)-transition will be considered, i.e. ( a ,  p )  = (i, 1). 

A particular solution of equation (17) may be found by letting 

w = da/D[cos cr+c0s(a/2)]”~.  (18) 

This gives a solution 

w = A[+2q/A= 2 Y  

which, since the integral in equation (18) may be evaluated directly, gives 

cos(a/2) = [ 5  - sin(D(6)”’ Y)][7 + sin(D(6)”’Y)]-’ 

where A is an arbitrary constant. More detailed results may be obtained by the use of 
this transformation [7, 81. 

Table 1 lists additional solutions of equation (17)  in the form 

a = -4 tan-’[ cF(A6 + Bq)] (19) 

where F is a combination of Jacobian elliptic functions, with constants A and B, 
arbitrary modulus k and a yet to be determined constant c. The arguments of the 
functions will be omitted in order to simplify the notation. Equations (20)-(23) give 
four sets of periodic solutions, the first two of which have limiting solutions which are 
the single-soliton solution. 

It is possible to solve equation (17) directly by looking for a solution in the form 

a=4tan- ’ [F(A[+Bq)]  (24) 

Table 1.  Solutions of equation (17) .  

Trial 
solution F Conditions 

1. c cn/sn 3( k2 - 1)c4+ ( k2 - 2)c2+  5 = 0 

A B  = -D2c2 /4 [ (k2-  l ) c ‘ + l ]  
2.  c d n l s n  3k2(1 - k2)c4+ ( 1  - 2 k 2 ) c 2 + 5  = 0 

A B  = -D2c2/4[1 + k2(1 - k2)c4] 

A B = - D 2 c 2 / 4 [ c 4 +  k 2 -  1 1  

A B = - D 2 ~ 2 / 4 [ k 2 ( k Z - l ) - ~ 4 ]  

3.  c sn/cn 

4. c sn/dn 

3c4+  ( 2  - k 2 ) c 2 +  5(k2 - 1 )  = 0 

3c4+ (2k2-  l ) c 2  - 5k2(k2 - 1 )  = 0 

~ 

Limiting solution Comments 

-4 t a n - ’ [ 8  cosech(A*[+ B * v ) ]  Soliton limit 
(20) 

A*B* = -5D2 

Same as 1 Soliton limit 
(21) 

None 

None 

Oscillatory 
solution (22) 
Oscillatory 
solution (23) 
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where F is now a general function. Equation (17) will be satisfied provided that 

F’2 = (1 + E l F 2 ) (  1 + E2F2) (25) 

where 

4E1 = 4 +  a + 2 p  + [(a + 2 p ) * +  1 6 p p 2  

E 1 E 2 = 1 + ~ ~ / 2  AB = - D2. 
(26) 

In particular, when ( a ,  p )  = (4, l ) ,  

8El = 13+(89)1’2 4E1E2 = 5. (27) 

The preceding discussion may be generalized by the following theorem. 

Theorem. Let U = 2 tan-’ F(A[+ Bq), with constant A and B, be a solution of the SG 

equation, equation (9). Then 

U = -4 tan-’[cF(A,S+ B1q)] (28) 

is a solution of the double SG equation, equation (17). 

The values of A l ,  B1 and c are given in the body of the proof. 

Proof: The proof is simple and constructive. Differentiation of equation (28) gives 

uE7 =2AlBl  s ~ ~ ( u / ~ ) [ F ” / F - ~ c ~ F ’ ~ / ( ~ + c ~ F ~ ) ] .  (29) 

Substitution of equation (13) into equation (29) gives 

u5,, =2AIB1 sin(u/2){[2(1 -c2)F’2/(1+F2)(1+c2F2)]+1/AB} 

which will satisfy equation (17) provided that 

( -E +1/AB)c4+(2E -1 /AB)c2-E =2P[(-E + 1 / A B ) c 4 + E ] / a  

AlBl = -D2ac*/2[E + ( - E  + 1/AB)c4]. 

Noting that the single-soliton solution of the Q(2)-transition is obtained by choosing 
E = 1, AB = 1 gives c2 = 5, AIBl  = -5D2/4, in agreement with the previous results; 
thus, the single soliton is obtained from 

F” = 5F2(  1 + F 2 ) .  

Finally, the double sc equation, equation (17), admits a solution 

U = 4 tan-’ F(A[+ B T )  (30) 
with F” = 1 + EF’, provided that E = ( a - 2p) /  a and AB = - D2( a + 2p)/2(  E - 2). 

4. The triple sine-Gordon equation 

The equation will be taken in the form 

uC7=-Dz[a s in(u /3)+p s i n ( 2 ~ / 3 ) + y s i n u ] .  
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The analysis of the previous section provides the clue as to how to obtain a solution 
of equation (31).  Thus, a trial solution will be taken in the form 

U = 6 tan-' F ( A [ +  B T ) .  ( 3 2 )  
Substitution of equation ( 3 2 )  into equation ( 3 1 )  gives 

L [ F ] =  D 2 [ a + 3 y + 2 p  cos (a /3 ) -4y  s in2(u /3)] /3AB 

= D2TJ  1 +2(a  - 5y)F2T;'  + ( a  - 2 p  + 3y)F4T; ' ] /3AB(  1 + F2)*  ( 3 3 )  
where T3 = a + 2 p  + 3 y. The function 

( 1 + F*)  F f 2  = ( 1 + El F 2 )  ( 1 + E2F2) (34) 
will satisfy equation (33) provided that 

E,E2 T3 - 2( El + E,)( [Y + ,8 - y )  = - 3 ~  + 15y 

E ,  E2T3 + ( E ,  + E ~ ) ( ( Y  - 2 p  + 3 7 )  = 3( CY - 2 p  + 3 ~ ) .  

This gives 

(3a  + y ) E ;  = 3 ( a  - p  - y)+(-1) '[3(3p2+8j3y-  1 6 [ ~ y ) ] " ~  

i = 1 , 2 ,  which, together with the choice 

A B  = T3D2/3( E ,  + E2 - 3 )  

reduces the solution to a quadrature of equation (34).  For (a ,  p, y )  = (i, 3, l ) ,  E ,  = -3, 

It is possible to relate the solutions of the double and triple SG equations in the 

Let 

Ez= - 1 ,  A B =  -2D2/9. 

following way. 

a = -4 tan-' F ( A [ +  B T )  

be a solution of 

ueq = - D2[  U sin( a/2) - V sin a]  

Ff2 = ( 1  + E r F 2 ) (  1 + E $ F 2 )  

( 3 5 )  

(36) 

with constant ( U ,  V ) .  Then 

with A B  = -D2/4n,  with constant n, will satisfy equation ( 3 5 )  if 

ET = 1 + n ( U - 2 V )  + [ n2( U - 2 v ) ~  - 4n v ] " ~  E ? = ( l + 2 n U ) / E T .  
A direct calculation shows that 

r+=6tan- '  F ( A , [ + B l ~ )  

will be a solution of equation (31) of the form of equation (34) with 

a = $ - n V / 6  p = 2n( V -  U ) / 3  y = nV/2  A1 B,  = -2D2/9. 
The solution obtained previously is obtained by choosing n = 2 ,  ( U ,  V )  = (i, 1 ) .  

5. The quadruple sine-Gordon equation 

The equation will be taken in the form 

at,, = - D 2 [ a  sin(a/4) + p  sin(2a/4) + y sin(3a/4) + 6 sin a].  (37) 
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Proceeding as in the previous sections, substitution of 

(T = 8 tan-’ F ( A & +  BT) 

into equation (37) gives 

4AB(1 +F2)3L[F]/D2T4 

= [ 1 + (3a  + 2 p  - 7 y - 286)F’ T;’ + (3a  - 2p - 7 y  + 286)F4 Tyl 

+ ( - 2 p  + 3 7  - 46)F6Ti1]  

where T4 = a + 2 p  + 3 y +4S. Equation (39) will be satisfied by 

4243 

(38) 

3 

F12= JJ ( 1 + E i F 2 ) / ( 1 + F 2 ) 2  
i = l  

provided that 

(3a + 2 p  - 7 7  -286)T;I = (2R2 - 3Rl) / (  R3 -4) 

(3a  -2p  - 7 7 s  286) Ty1 = (3R3 -2R,)/(R, -4) 

(a -2p  + 3 y  -46)Tq’ = R3/(4- R I )  

where R1 = E, + E2 + E3, R2 = El E2 + El E3 + EZE3, R3 = El E2E3. For a numerical 
solution for (a, p, y, 6 )  = (a, a, a, l ) ,  the problem reduces to solving the cubic equation 

y:+22y:+ 136y3 + 160 = 0 

where y, = -1 1 - E, .  The roots are obtained easily, so that 

E l = - l  E2 = - 5  + 2(5)1’2 

A B =  T4D2/(El+E2+E3-4)4. 

E3 = - 5  - 2(5)I” 

6. The quintuple sine-Gordon equation 

The equation will be taken in the form 

uCrl = - D ~ [  a sin(c+/5) + p sin(2a/5) + y sin(3(~/5)  + 6 sin(4a/5) + E sin a]. (41) 

Substitution of 

(42) (T = 10 tan-’ F(A(+ B T )  

into equation (41) gives 

5AB(1+ F ~ ) ~ L [ F I / D ~ T ,  

= [ 1 + 4( CY + p - y - 66 - 15 E )  F2 T;’ + 2( 3 - 7 7 + 63 E )  F4 T;’ 

+ 4( (Y - p - - 66 - 15&)F6T;’ + ( (Y - 2 p  + 37 - 46 + 5 & ) F 8  T;’] (43) 
where T, = a + 2 p  + 3 y + 46 + 5 ~ .  Equation (43) will be satisfied by the function 

4 

F” = n (1 + EiF2)/ (1 + F2)3 
i = l  
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provided that 

+ p - y -66 - 1 5 ~  = T5( S2-2S1)/2( SI - 5 )  

2(3a -7y + 638) = 3 T5(S3 - S2)/(S1 - 5 )  

2( CY - /3 - 
CY - 2p + 3 

- 6 6 - 1 5 E ) = (2 S4 - S3) T5/ (S i  - 5 )  

- 46 + 5~ = S4 T s / (  5 - SI) 

where 

SI= E1 + E,+ E3 

S2= E,E4+ E1E2+ E2E3+ E2E4+ E3E4+ E1E3 

S3= ElE2E3+ElEZE4+ElE3E4+ E2E3E4 

S4 = ElE2E3 E4. 

For (a ,  p, y, 6, E )  = ( f ,  3,  $, 4 ,  l ) ,  the problem is reduced to solving the quartic equation 

y 4  4 - T y 4  40 3 - 7 y 4  10 2 - y y 4  --e = o y , = ? - ( E l + E Z + E 3 ) .  
The roots are obtained easily and give 

E l  = -0.085 83 Ez= 13.718 876 

E3 = -0.149 8565+i(1.381 1959) E 4 =  -0.1498565-i(1.381 1959) 

which, together with 

A B =  D2T5/ (E1+  E2+ E3+ E4-5)5  

reduce the solution of the problem to a quadrature. This is the first case of a @transition 
in which all of the roots are not real. 

7. The general case 

The equation for an arbitrary number of terms may be written as 
n 

ut,, = -02 C ai sin( iu/ n ) .  
i = l  

The solution is taken in the form 

(44) 

U = 2n tan-'F(A[+ 87)  (45) 
which leads to 

n-1 

F" = fl (1 + E i F 2 ) / (  1 + F2)n-2 
i = l  

where the E, ,  i = 1,2,. . . , n - 1, are the roots of an ( n  - 1)th-order algebraic equation, 
obtained as illustrated in the specific examples. A and B satisfy 

Equations (46) and (47) are valid for n > 2. Structurally, they are also valid for n = 2 
(equation (30)) and n = 1 (equation (16)), but these two cases require the negative of 
AB as given by equation (47). 
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This solution may be used in another way. Suppose a rather general KG equation 
is considered, say 

= v’( U). (48) 

Assuming that the function v ’ ( a )  may be expanded into a Fourier sine series 
X 

v’( a )  = b, sin( r a )  
r = l  

(49) 

where - r r  s u =z rr has been chosen for convenience, the change of variable u = e /  n 
transforms equation (48) to 

X 

ec,,/n = 1 br sin(re/n) 
r = l  

which is clearly of the form of the equations considered. Consequently, the method 
of the paper provides a way to obtain an approximate solution for a travelling wave 
for a rather general KG equation when the series in equation (50) is approximated by 
a partial sum of order n. 

8. The Backlund transformation for the double sine-Gordon equation 

The usual SG equation, equation (9), admits an auto-BT relating two solutions a1 and 
u2 ; specifically, 

The close relation between the single and double SG equations, as exemplified by the 
theorem of section 3 means that a restricted BT may be written relating two solutions 
of the latter. There are various ways of writing a transformation valid for the 
double SG equation, but the most practical is to write equations (51) in terms of 
u = 2 tan-’ F ( A t *  ?)/A); this gives 

F~*/( 1 + F:) 7 F2J (1 + F:) = a(Fl + F~)/ [ (1 + F:)( 1 + F:)]”~ 
( 5 2 )  F1J( 1 + F:) + F2J(  1 + F:)  = (F, - F 2 ) / a [ (  1 + F:)( 1 + F;)]l’2* 

Equations ( 5 2 )  provide a BT for the double SG equation if F is taken to be determined 
from 

p= 1 -tan-’ cF[A,(At* v /A)]  

with constant A 1 .  Letting F2 = 0 leads to 

F1 = -cosech(at* ?) /a ) .  

Thus 

a = 4 t a n - ’ [ c  cosech Al(a[* ~ / a ) ]  

is the corresponding solution of the double SG equation. This gives an alternative 
method of determining single-soliton solutions of the double SG equation. 
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9. The P- and R-transitions 

The coefficients in equation (7) have the values 

d, =(j’-m’)”’/j d, = [( j+  1)’- m2I1”/ j (53) 

for these transitions. 
These coefficients lead to mathematically more difficult equations since the argu- 

ments of the sine functions are no longer all rational. For example, for j = 2 ,  the 
equations would be 

ut? = -D2[sin a+& sin(&cr/2)] 

at,, = -D’[$ s i n ( 3 ~ / 2 )  + 2 J z  s i n ( J z a ) + d 3  sin(&/2)] 

(54) 

(55) 

The following procedure would give an approximate solution. Since 

sin b u =  -(2n-’ sin bn)[sin a / ( b 2 - 1 ) - 2  s i n 2 ~ / ( b ’ - 2 ~ )  

+ 3 ~ i n 3 u / ( b ’ - 3 ~ ) + . . . ]  (56) 

for -n s U S  T,  each of the sine terms may be expanded in sine series using equation 
( 5 6 ) .  This would lead to equations of the form 

utV = -D’[Al sin a+ A2 sin(2a) +. . .] 

Bc,,=-nD2[A, s in(8 /n)+A2sin(28/n)+ .  . .I. ( 5 8 )  

(57) 

with constant A,. The change of variable U = e / n  transforms equation (57) to 

If the series obtained from the use of equation (56) are approximated by partial sums 
of order n, equation (58) becomes an equation of the type considered in the paper. 

As an example, for n = 7, the equation corresponding to equation (54) would be 

= -7D2[1.451 sin(el7) -0.277 sin(28/7)+0.164 sin(38/7) -0.118 sin(48/7) 

+0.0929 sin(58/7) -0.0769 sin(6@/7)+0.0654 sin e]. 

10. Conclusions 

Analytical solutions have been obtained for a class of n-tuple SG equations which 
govern the @transition. Explicit solutions are given up through the five-tuple equation 
together with a formula for the general case, the method of obtaining the requisite 
algebraic equation being clear from the explicit examples. Since the method is appli- 
cable to n-tuple SG equations with arbitrary coefficients, it may be utilized to give an 
approximate solution for the P- and R-transitions after the appropriate sine terms 
have been approximated by partial sums of their Fourier sine series. 

The theorem connecting the solutions of the SG and the double SG equation shows 
that the latter admits a restricted BT, the ‘vacuum’ solution of which is the single-soliton 
solution. This result is more in harmony with the classical theory than the usual 
constant-phase method. Analogous results hold true for the triple SG equation. 
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